Early theories of the structure of matter were not based upon experiments. As scientists began to study the relationship between several physical phenomenon such as electricity, and magnetism they began to develop different models about atomic structure.

Welcome to the atomic structure timeline. This site explores discoveries related to atomic structure including the electron, proton and neutron. The dates used for events are open to debate since many scientist's spent decades studying a topic

Year	Scientist(s)	Discovery
Greek era	<u>Democritus</u>	"by convention bitter, by convention sweet, but in reality atoms and void"
1704	Isaac Newton	Proposed a mechanical universe with small solid masses in motion.
1803	John Dalton	Proposed an "atomic theory" with spherical solid atoms based upon measurable properties of mass.
1832	<u>Michael Faraday</u>	Studied the effect of electricity on solutions, coined term "electrolysis" as a splitting of molecules with electricity, developed laws of electrolysis. Faraday himself was not a proponent of atomism.
1859	J. Plucker	Built one of the first gas discharge tubes ("cathode ray tube").
1869	Dmitri Mendeleev	Arranged elements into 7 groups with similar properties. He discovered that the properties of elements "were periodic functions of the their atomic weights". This became known as the Periodic Law.
1873	<u>James Clerk</u> <u>Maxwell</u>	Proposed electric and magnetic fields filled the void.
1874	G.J. Stoney	Proposed that electricity was made of discrete negative particles he called <u>electrons</u> ". (Link to info on electrons)
1879	<u>Sir William</u> Crookes	Discovered cathode rays had the following properties: travel in straight lines from the cathode; cause glass to fluoresce; impart a negative charge to objects they strike; are deflected by electric fields and magnets to suggest a negative charge; cause pinwheels in their path to spin indicating they have mass.
1886	E. Goldstein	Used a CRT to study "canal rays" which had electrical and magnetic properties opposite of an electron.
1895	Wilhelm Roentgen	Using a CRT he observed that nearby chemicals glowed. Further experiments found very penetrating rays coming from the CRT that were not deflected by a magnetic field. He named them "X-rays".
1896	<u>Henri Becquerel</u>	While studying the effect of x-rays on photographic film, he discovered some chemicals spontaneously decompose and give off very pentrating rays.

1897	<u>J.J. Thomson</u>	Used a <u>CRT</u> to experimentally determine the charge to mass ratio (e/m) of an electron = 1.759×10^8
		coulombs/gram.
1897	J.J. Thomson	Studied "canal rays" and found they were associated with the proton H^+
1898	Rutherford	Studied radiations emitted from uranium and thorium and named them <i>alpha</i> and <i>beta</i> .
1898	<u>Marie Sklodowska</u> Curie	Studied uranium and thorium and called their spontaneous decay process "radioactivity". She and her husband Pierre also discovered the radioactive elements polonium and radium.
1900	<u>Soddy</u>	Observed spontaneous disintegration of radioactive elements into variants he called "isotopes" or totally new elements, discovered "half-life", made initial calculations on energy released during decay.
1900	Max Planck	used the idea of quanta (discrete units of energy) to explain hot glowing matter.
1903	<u>Nagaoka</u>	Postulated a "Saturnian" model of the atom with flat rings of electrons revolving around a positively charged particle.
1904	Abegg	Discovered that inert gases had a stable electron configuration which lead to their chemical inactivity.
1905	Albert Einstein	Published the famous equation $\underline{\mathbf{E}=\mathbf{mc}^2}$
1906	Hans Geiger	Developed an electrical device to "click" when hit with alpha particles.
1909	<u>R.A. Millikan</u>	Oil drop experiment determined the charge (e=1.602 x 10^{-19} coulomb) and the mass (m = 9.11 x 10^{-28} gram) of an electron.
1911	Ernest Rutherford	Using alpha particles as atomic bullets, probed the atoms in a piece of thin (0.00006 cm) gold foil. He established that the nucleus was: very dense, very small and positively charged. He also assumed that the electrons were located outside the nucleus.
1914	H.G.J. Moseley	Using x-ray tubes, determined the charges on the nuclei of most atoms. He wrote"The atomic number of an element is equal to the number of protons in the nucleus". This work was used to reorganize the periodic table based upon atomic number instead of atomic mass.
1919	Aston	Discovered the existence of isotopes through the use of a mass spectrograph.
1922	Niels Bohr	Developed an explanation of atomic structure that underlies regularities of the periodic table of elements. His atomic model had atoms built up of sucessive orbital shells of electrons.

		Discovered that electrons had a dual nature-similar to
1923	<u>de Broglie</u>	both particles and waves. Particle/wave duality.
		Supported Einstein.
1927	Heisenberg	Described atoms by means of formula connected to the frequencies of spectral lines. Proposed Principle of
		Indeterminancy - you can not know both the position
		and velocity of a particle.
1929	Cockcroft / Walton	Built an early linear accelerator and bombarded lithium
		with protons to produce alpha particles
		Viewed electrons as continuous clouds and introduced
1930	<u>Schrodinger</u>	"wave mechanics" as a mathematical model of the
		atom.
1030	Paul Dirac	Proposed <i>anti-particles</i> . Anderson discovered the anti- electron (positron) in 1932 and Segre/Chamberlain
1750	<u>raur Dilac</u>	detected the anti-proton in 1952 and Segrer Chamberlain
		Using alpha particles discovered a neutral atomic
1932	James Chadwick	particle with a mass close to a proton. Thus was
		discovered the neutron.
1938		Conducted experiments verifying that heavy elements
	Lise Meitner,	capture neutrons and form unstable products which
	<u>Hann</u> , Strassman	continuing the fission chain reaction
1941 -		Synthesized 6 transuranium elements and suggested a
51	<u>Glenn Seaborg</u>	change in the layout of the periodic table.
1042	Ennice Formai	Conducted the first controlled chain reaction releasing
1942	Enrico Fermi	energy from the atoms nucleus.
1950's -	<u>New</u>	Follow this link to current theories about atomic
	findings/particles	stucture.